平行线的问题是我们初一学习数学时候的经典问题,对我们的学习帮助很大,今天我们就来一起去学习和了解一下关于初一数学平行线证明题的内容,相信同学们能够很好的将这些基础的知识学习扎实。
1.小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,要求AB∥CD,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,于是他就说AB与CD肯定是平行的,你知道什么原因吗?
2.如图,某湖上风景区有两个观望点A,C和两个度假村B,D.度假村D在C的正西方向,度假村B在C的南偏东30°方向,度假村B到两个观望点的距离都等于2km.
(1)求道路CD与CB的夹角;
(2)如果度假村D到C是直公路,长为1km,D到A是环湖路,度假村B到两个观望点的总路程等于度假村D到两个观望点的总路程.求出环湖路的长;
(3)根据题目中的条件,能够判定DC∥AB吗?若能,请写出判断过程;若不能,请你加上一个条件,判定DC∥AB.
答案:
1.解:AB与CD平行.
理由是:延长AE交DC于M,
∵∠AED=90°,∠EDC=55°,
∴∠AMD=∠AED-∠EDC=35°,
∵∠BAE=35°,
∴∠BAE=∠AMD,
∴AB∥DC.
2.解:(1)如图所示,过C作CM⊥CD交AB与M,则∠DCM=90°,∠MCB=30°,
∴CD与CB的夹角为90°+30°=120°;
(2)环湖路的长=AB+BC-CD=3km;
(3)不能判定DC∥AB.
加上的条件可以是:CA平分∠DCB.
证明:∵AB=AC,
∴∠CAB=∠ACB,
∵CA平分∠DCB,
∴∠DCA=∠ACB,
∴∠DCA=∠CAB,
∴DC∥AB.
相信同学们在学习了初一数学平行线证明题的内容之后,能够将这些基础的知识学好,不断地提高自己的综合实力,考出更高的分数。